...
The Bruker Tracer 5 is a fully portable analyzer based on energy dispersive X-ray fluorescence (EDXRF) technology. When X-ray radiation from the handheld XRF instruments' X-ray tube (source) excites the atoms in a sample, the atoms release low-energy fluorescent X-rays detected by device's detector. The energy level of each fluorescent X-ray is characteristic of the element excited. As a result, one can tell what elements are present based on the emitted energy patterns of the X-rays. The Bruker Tracer 5 portable XRF (pXRF) allows for elemental measurements on section halves, discrete samples and prepared powder mounts. It is standard for the onboard technician to train one or more scientists in pXRF operation and sample prep. The scientists are then responsible for the work flow during the expedition. The Tracer 5 pXRF can be run either independently or through an attached pc laptop. The Bruker RemoteCTRL software on the laptop mirrors what is present on the screen of the Tracer5 and all functions are the same. If the connection between the device and the laptop is interrupted, there is no loss of data.
Before you begin: The instrument generates X-rays and should only be operated by users trained in radiation safety. Do not expose any part of your body to X-rays!
...
The pXRF should be set up in a location that is isolated with minimal people working nearby, but also be easily accessible with sufficient space to scan section halves. This should be done without disrupting other workstations or without danger of dropping or mishandling section halves or core material. Typical locations have been the Downhole Lab bench, Paleo Lab bench or correlatorsCorrelators' station, if they are not sailing, but consult . Consult with the scientists and , co-chiefs, and Lab Officer/Assistant Lab Officers for a preferred location for each expedition. Once set up and it has been established which scientists will be trained to use the device (usually two scientists per shift), dosimeter rings will be issued to each person that will be operating the device and the training technician. Each dosimeter ring has a unique ID and is assigned to a specific person.
...
The current application can be changed by selecting ‘Application’, choosing a different application type and selecting ‘OK’. This device has six applications installed. The best application for our purposes is GeoExploration. Each application has different scanning parameters which preferentially pick up some elements better than others. The device will keep the chosen application until manually changed.
Some application settings, such as beam scan duration, can be adjusted by selecting ‘Settings’ on the main display screen. Select ‘Ok’ when finished adjusting the following settings:
...
Tracer 5 pXRF can be run either independently or through an attached pc laptop. The Bruker RemoteCTRL software on the laptop mirrors what is present on the screen of the Tracer5 and all functions are the same. If the connection between the device and the laptop is interrupted, there is no loss of data.
Application and Settings
The current application can be changed by selecting ‘Application’, choosing a different application type and selecting ‘OK’. This device has six applications installed. The best application for our purposes is GeoExploration. Each application has different scanning parameters which preferentially pick up some elements better than others. The device will keep the chosen application until manually changed.
Some application settings, such as beam scan duration, can be adjusted by selecting ‘Settings’ on the main display screen. Select ‘Ok’ when finished adjusting the following settings:
- Duration: This screen will display the number of phases used by the current application. The time in seconds spent on each phase can be adjusted or set to unlimited (ending when the trigger is released). Note: The longer the scan time, the greater the accuracy and precision and the lower the error. For geological samples, 1 minute per phase or longer is not uncommon, but not required.
- First Result/Test: This is the number of seconds before results will be shown on the display once a measurement has been triggered.
- Trigger Active: The trigger can be set to ‘Auto’ or ‘Manual’ by selecting this button.
- Auto: The measurement proceeds by pressing and releasing the trigger. Preferred.
- Manual: The trigger must be pressed for the duration of the measurement. If the trigger is released at any time during the measurement, measuring will stop.
...
5. A window will open showing you a preview of the file and you have to click Load. (Figure 18)
Figure 18. Data Preview
6. Click load and the data will be exported to excel and should look like Figure 19.
...
. (Figure 18)
Figure 18. Data Preview
6. Click load and the data will be exported to excel and should look like Figure 19.
Figure 19. Exported file from pXRF device.
Setting Date & Time
To set the time, select on the main display screen. Then select and then select Date/Time from the available list. A stylus or fine pointed tool (non-metal, such as a wooden applicator stick) is helpful to access the small buttons involved in setting the date and time.
In the screen that displays (Fig. XX), change the date by selecting on year, month and the numerical day. The time can be changed by using the selecting the hour, minute, second and AM/PM and using the small arrows to the right of the box to adjust the number. Please set the device to UTC time (NOT the same as ship operation time). If unsure what UTC time is, check the time on the nearest lab computer.
Once the correct date and time is shown (as close as possible), select ‘Apply’ and then ‘OK’ to exit the screen.
Figure XX. The date and time setup screen.
LIMS Component Table
PLACEHOLDER until the new PXRF components and data structure is defined | |||
ANALYSIS | TABLE | NAME | ABOUT TEXT |
PXRF | SAMPLE | Exp | Exp: expedition number |
PXRF | SAMPLE | Site | Site: site number |
PXRF | SAMPLE | Hole | Hole: hole number |
PXRF | SAMPLE | Core | Core: core number |
PXRF | SAMPLE | Type | Type: type indicates the coring tool used to recover the core (typical types are F, H, R, X). |
PXRF | SAMPLE | Sect | Sect: section number |
PXRF | SAMPLE | A/W | A/W: archive (A) or working (W) section half. |
PXRF | SAMPLE | text_id | Text_ID: automatically generated database identifier for a sample, also carried on the printed labels. This identifier is guaranteed to be unique across all samples. |
PXRF | SAMPLE | sample_number | Sample Number: automatically generated database identifier for a sample. This is the primary key of the SAMPLE table. |
PXRF | SAMPLE | label_id | Label identifier: automatically generated, human readable name for a sample that is printed on labels. This name is not guaranteed unique across all samples. |
PXRF | SAMPLE | sample_name | Sample name: short name that may be specified for a sample. You can use an advanced filter to narrow your search by this parameter. |
PXRF | SAMPLE | x_sample_state | Sample state: Single-character identifier always set to "W" for samples; standards can vary. |
PXRF | SAMPLE | x_project | Project: similar in scope to the expedition number, the difference being that the project is the current cruise, whereas expedition could refer to material/results obtained on previous cruises |
PXRF | SAMPLE | x_capt_loc | Captured location: "captured location," this field is usually null and is unnecessary because any sample captured on the JR has a sample_number ending in 1, and GCR ending in 2 |
PXRF | SAMPLE | location | Location: location that sample was taken; this field is usually null and is unnecessary because any sample captured on the JR has a sample_number ending in 1, and GCR ending in 2 |
PXRF | SAMPLE | x_sampling_tool | Sampling tool: sampling tool used to take the sample (e.g., syringe, spatula) |
PXRF | SAMPLE | changed_by | Changed by: username of account used to make a change to a sample record |
PXRF | SAMPLE | changed_on | Changed on: date/time stamp for change made to a sample record |
PXRF | SAMPLE | sample_type | Sample type: type of sample from a predefined list (e.g., HOLE, CORE, LIQ) |
PXRF | SAMPLE | x_offset | Offset (m): top offset of sample from top of parent sample, expressed in meters. |
PXRF | SAMPLE | x_offset_cm | Offset (cm): top offset of sample from top of parent sample, expressed in centimeters. This is a calculated field (offset, converted to cm) |
PXRF | SAMPLE | x_bottom_offset_cm | Bottom offset (cm): bottom offset of sample from top of parent sample, expressed in centimeters. This is a calculated field (offset + length, converted to cm) |
PXRF | SAMPLE | x_diameter | Diameter (cm): diameter of sample, usually applied only to CORE, SECT, SHLF, and WRND samples; however this field is null on both Exp. 390 and 393, so it is no longer populated by Sample Master |
PXRF | SAMPLE | x_orig_len | Original length (m): field for the original length of a sample; not always (or reliably) populated |
PXRF | SAMPLE | x_length | Length (m): field for the length of a sample [as entered upon creation] |
PXRF | SAMPLE | x_length_cm | Length (cm): field for the length of a sample. This is a calculated field (length, converted to cm). |
PXRF | SAMPLE | status | Status: single-character code for the current status of a sample (e.g., active, canceled) |
PXRF | SAMPLE | old_status | Old status: single-character code for the previous status of a sample; used by the LIME program to restore a canceled sample |
PXRF | SAMPLE | original_sample | Original sample: field tying a sample below the CORE level to its parent HOLE sample |
PXRF | SAMPLE | parent_sample | Parent sample: the sample from which this sample was taken (e.g., for PWDR samples, this might be a SHLF or possibly another PWDR) |
PXRF | SAMPLE | standard | Standard: T/F field to differentiate between samples (standard=F) and QAQC standards (standard=T) |
PXRF | SAMPLE | login_by | Login by: username of account used to create the sample (can be the LIMS itself [e.g., SHLFs created when a SECT is created]) |
PXRF | SAMPLE | login_date | Login date: creation date of the sample |
PXRF | SAMPLE | legacy | Legacy flag: T/F indicator for when a sample is from a previous expedition and is locked/uneditable on this expedition |
PXRF | TEST | test changed_on | TEST changed on: date/time stamp for a change to a test record. |
PXRF | TEST | test status | TEST status: single-character code for the current status of a test (e.g., active, in process, canceled) |
PXRF | TEST | test old_status | TEST old status: single-character code for the previous status of a test; used by the LIME program to restore a canceled test |
PXRF | TEST | test test_number | TEST test number: automatically generated database identifier for a test record. This is the primary key of the TEST table. |
PXRF | TEST | test date_received | TEST date received: date/time stamp for the creation of the test record. |
PXRF | TEST | test instrument | TEST instrument [instrument group]: field that describes the instrument group (most often this applies to loggers with multiple sensors); often obscure (e.g., user_input) |
PXRF | TEST | test analysis | TEST analysis: analysis code associated with this test (foreign key to the ANALYSIS table) |
PXRF | TEST | test x_project | TEST project: similar in scope to the expedition number, the difference being that the project is the current cruise, whereas expedition could refer to material/results obtained on previous cruises |
PXRF | TEST | test sample_number | TEST sample number: the sample_number of the sample to which this test record is attached; a foreign key to the SAMPLE table |
PXRF | TEST | Top depth CSF-A (m) | Top depth CSF-A (m): position of observation expressed relative to the top of the hole. |
PXRF | TEST | Bottom depth CSF-A (m) | Bottom depth CSF-A (m): position of observation expressed relative to the top of the hole. |
PXRF | TEST | Top depth CSF-B (m) | Top depth [other] (m): position of observation expressed relative to the top of the hole. The location is presented in a scale selected by the science party or the report user. |
PXRF | TEST | Bottom depth CSF-B (m) | Bottom depth [other] (m): position of observation expressed relative to the top of the hole. The location is presented in a scale selected by the science party or the report user. |
PXRF | RESULT | datetime | RESULT datetime: date/time stamp for each run |
PXRF | RESULT | mode | RESULT mode: the calibration selected for the run (e.g., Geochem, Mudrock) |
PXRF | RESULT | run_number | RESULT run number: serial number of the run (incremented by the instrument for each sample) |
PXRF | SAMPLE | sample_name | SAMPLE sample name: repeated display of the sample label ID from the SAMPLE table |
PXRF | RESULT | reading | RESULT reading number: human-input run number for each sample |
PXRF | RESULT | run_spm_asman_id | RESULT spectrum file ASMAN_ID: serial number of the ASMAN link for the spectral raw data (.SPM) file |
PXRF | RESULT | run_spm_filename | RESULT spectrum filename: file name for the spectral raw data (.SPM) file |
PXRF | RESULT | run_main_asman_id | RESULT main report ASMAN_ID: serial number of the ASMAN link for the reduced data table (.CSV) file |
PXRF | RESULT | run_main_filename | RESULT main report filename: file name for the reduced data table (.CSV) file |
PXRF | RESULT | offset (cm) | RESULT offset (cm): position of the observation made, measured relative to the top of a section half. |
PXRF | RESULT | result comments | RESULT comment: contents of a result parameter with name = "comment," usually shown on reports as "Result comments" |
...